3.22.73 \(\int \frac {(2+3 x)^2}{(1-2 x)^{5/2} (3+5 x)} \, dx\) [2173]

Optimal. Leaf size=54 \[ \frac {49}{66 (1-2 x)^{3/2}}-\frac {217}{242 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{121 \sqrt {55}} \]

[Out]

49/66/(1-2*x)^(3/2)-2/6655*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)-217/242/(1-2*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {89, 65, 212} \begin {gather*} -\frac {217}{242 \sqrt {1-2 x}}+\frac {49}{66 (1-2 x)^{3/2}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{121 \sqrt {55}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)^2/((1 - 2*x)^(5/2)*(3 + 5*x)),x]

[Out]

49/(66*(1 - 2*x)^(3/2)) - 217/(242*Sqrt[1 - 2*x]) - (2*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(121*Sqrt[55])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 89

Int[(((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_))/((a_.) + (b_.)*(x_)), x_Symbol] :> Int[ExpandIntegr
and[(e + f*x)^FractionalPart[p], (c + d*x)^n*((e + f*x)^IntegerPart[p]/(a + b*x)), x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && IGtQ[n, 0] && LtQ[p, -1] && FractionQ[p]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(2+3 x)^2}{(1-2 x)^{5/2} (3+5 x)} \, dx &=\int \left (\frac {49}{22 (1-2 x)^{5/2}}-\frac {217}{242 (1-2 x)^{3/2}}+\frac {1}{121 \sqrt {1-2 x} (3+5 x)}\right ) \, dx\\ &=\frac {49}{66 (1-2 x)^{3/2}}-\frac {217}{242 \sqrt {1-2 x}}+\frac {1}{121} \int \frac {1}{\sqrt {1-2 x} (3+5 x)} \, dx\\ &=\frac {49}{66 (1-2 x)^{3/2}}-\frac {217}{242 \sqrt {1-2 x}}-\frac {1}{121} \text {Subst}\left (\int \frac {1}{\frac {11}{2}-\frac {5 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=\frac {49}{66 (1-2 x)^{3/2}}-\frac {217}{242 \sqrt {1-2 x}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{121 \sqrt {55}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 46, normalized size = 0.85 \begin {gather*} \frac {7 (-8+93 x)}{363 (1-2 x)^{3/2}}-\frac {2 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{121 \sqrt {55}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)^2/((1 - 2*x)^(5/2)*(3 + 5*x)),x]

[Out]

(7*(-8 + 93*x))/(363*(1 - 2*x)^(3/2)) - (2*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/(121*Sqrt[55])

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 38, normalized size = 0.70

method result size
derivativedivides \(\frac {49}{66 \left (1-2 x \right )^{\frac {3}{2}}}-\frac {2 \arctanh \left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{6655}-\frac {217}{242 \sqrt {1-2 x}}\) \(38\)
default \(\frac {49}{66 \left (1-2 x \right )^{\frac {3}{2}}}-\frac {2 \arctanh \left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{6655}-\frac {217}{242 \sqrt {1-2 x}}\) \(38\)
trager \(\frac {7 \left (93 x -8\right ) \sqrt {1-2 x}}{363 \left (-1+2 x \right )^{2}}-\frac {\RootOf \left (\textit {\_Z}^{2}-55\right ) \ln \left (-\frac {5 \RootOf \left (\textit {\_Z}^{2}-55\right ) x -8 \RootOf \left (\textit {\_Z}^{2}-55\right )-55 \sqrt {1-2 x}}{3+5 x}\right )}{6655}\) \(68\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^2/(1-2*x)^(5/2)/(3+5*x),x,method=_RETURNVERBOSE)

[Out]

49/66/(1-2*x)^(3/2)-2/6655*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)-217/242/(1-2*x)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 51, normalized size = 0.94 \begin {gather*} \frac {1}{6655} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) + \frac {7 \, {\left (93 \, x - 8\right )}}{363 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2/(1-2*x)^(5/2)/(3+5*x),x, algorithm="maxima")

[Out]

1/6655*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 7/363*(93*x - 8)/(-2*x + 1
)^(3/2)

________________________________________________________________________________________

Fricas [A]
time = 0.89, size = 69, normalized size = 1.28 \begin {gather*} \frac {3 \, \sqrt {55} {\left (4 \, x^{2} - 4 \, x + 1\right )} \log \left (\frac {5 \, x + \sqrt {55} \sqrt {-2 \, x + 1} - 8}{5 \, x + 3}\right ) + 385 \, {\left (93 \, x - 8\right )} \sqrt {-2 \, x + 1}}{19965 \, {\left (4 \, x^{2} - 4 \, x + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2/(1-2*x)^(5/2)/(3+5*x),x, algorithm="fricas")

[Out]

1/19965*(3*sqrt(55)*(4*x^2 - 4*x + 1)*log((5*x + sqrt(55)*sqrt(-2*x + 1) - 8)/(5*x + 3)) + 385*(93*x - 8)*sqrt
(-2*x + 1))/(4*x^2 - 4*x + 1)

________________________________________________________________________________________

Sympy [A]
time = 20.46, size = 83, normalized size = 1.54 \begin {gather*} \frac {2 \left (\begin {cases} - \frac {\sqrt {55} \operatorname {acoth}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: x < - \frac {3}{5} \\- \frac {\sqrt {55} \operatorname {atanh}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: x > - \frac {3}{5} \end {cases}\right )}{121} - \frac {217}{242 \sqrt {1 - 2 x}} + \frac {49}{66 \left (1 - 2 x\right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**2/(1-2*x)**(5/2)/(3+5*x),x)

[Out]

2*Piecewise((-sqrt(55)*acoth(sqrt(55)*sqrt(1 - 2*x)/11)/55, x < -3/5), (-sqrt(55)*atanh(sqrt(55)*sqrt(1 - 2*x)
/11)/55, x > -3/5))/121 - 217/(242*sqrt(1 - 2*x)) + 49/(66*(1 - 2*x)**(3/2))

________________________________________________________________________________________

Giac [A]
time = 1.13, size = 61, normalized size = 1.13 \begin {gather*} \frac {1}{6655} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {7 \, {\left (93 \, x - 8\right )}}{363 \, {\left (2 \, x - 1\right )} \sqrt {-2 \, x + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2/(1-2*x)^(5/2)/(3+5*x),x, algorithm="giac")

[Out]

1/6655*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) - 7/363*(93*x - 8)
/((2*x - 1)*sqrt(-2*x + 1))

________________________________________________________________________________________

Mupad [B]
time = 1.19, size = 32, normalized size = 0.59 \begin {gather*} \frac {\frac {217\,x}{121}-\frac {56}{363}}{{\left (1-2\,x\right )}^{3/2}}-\frac {2\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{6655} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x + 2)^2/((1 - 2*x)^(5/2)*(5*x + 3)),x)

[Out]

((217*x)/121 - 56/363)/(1 - 2*x)^(3/2) - (2*55^(1/2)*atanh((55^(1/2)*(1 - 2*x)^(1/2))/11))/6655

________________________________________________________________________________________